Synthesis and structural and optical properties of metastable ZrO₂ nanoparticles with intergranular Cr³⁺/Cr⁴⁺ doping and grain surface modification

S. RAM

Materials Science Centre, Indian Institute of Technology, Kharagpur 721 302, India E-mail: sram@matsc.iitkgp.ernet.in

Nanoparticles of stabilized ZrO₂ in a single cubic (c) phase are obtained with an intergranular doping of 4 to 20 at.% Cr^{3+}/Cr^{4+} additives by a chemical method using a high energy amorphous precursor with polymer molecules of sucrose and polyvinyl alcohol. In the polymer, the metal cations disperse and rearrange in a specific network structure with local symmetry probably similar to that in c-ZrO₂. On heating at 250 to 800°C in air, the polymer network decomposes and burns out spontaneously (with a strong exothermic peak over 350 to 500°C in thermal analysis) in a refined microstructure in 10 to 20 nm diameter particles of near spherical shape. Those are identified to be of c-ZrO₂ by x-ray diffraction. A modified microstructure of 15 to 30 nm crystallites of dispersed tetragonal (t) and/or monoclinic (m) phases in stabilized c-ZrO₂ develops on a prolong heating at 900 to 1000°C from a polymer precursor for 2 h or longer. Particles in t-ZrO₂ are in acicular shape, as long as 450 nm with aspect ratio $\phi \sim$ 5 to 20, while in the shape of platelets in m-phase in an average 300 nm size. It is found that the Cr^{3+}/Cr^{4+} additives promote formation of c-ZrO₂ by a controlled decomposition and combustion of precursor in small particles at 250 to 800°C temperature. Part of the additives form a thin amorphous surface layer in individual c-ZrO₂ grains so that it prevents them to grow or transform in the equilibrium m-ZrO₂ bulk structure as long as the temperature lies below 900°C. The x-ray diffraction in light of the optical spectrum reveals that part of the Cr⁴⁺ cations occupy Zr⁴⁺ sites in a distorted c-ZrO₂ lattice. © 2003 Kluwer Academic Publishers

1. Introduction

Bulk ZrO₂ at ambient pressure is polymorphic, exhibiting *Fm*3*m* cubic (c) fluorite structure at high temperatures above 2370°C, *P*4₂/*nmc* tetragonal (t) structure at intermediate 1200 to 2370°C temperatures, and *P*2₁/*c* monoclinic (m) structure at low temperatures below 950°C [1–5]. The transformation from the m- to t- or c-ZrO₂ polymorph is reversible so the high temperature polymorphs do not retain on cooling to room temperature [1, 2]. At high pressure, it adopts *Pbca* and *Pnam* two orthorhombic structures [2]. A third *Pbc*2₁ orthorhombic form is observed in few examples of partially stabilized ZrO₂ [6, 7].

The different ZrO₂ polymorphs have their own intrinsic physical and chemical properties, which make them to be of the most important engineering materials. High hardness, high wear resistance, low coefficient of friction, high elastic modulus, chemical inertness, good ionic conductivity, low thermal conductivity, and high melting temperature are their common properties [8, 9]. A displacive t \rightarrow m phase transformation, which occurs at ~950°C with a shear strain of ~0.16 and a volume expansion of ~4% on cooling from a high temperature [1, 2], limits applications of m-ZrO₂ as refractory or other engineering materials. It invokes a catastrophic fracture [2]. It can be resolved if replacing m-phase by the other phases. Efforts have been made to stabilize them in small crystallites of size at a nanometer scale with dopants of MgO, CaO, Y_2O_3 , CeO₂, Mg₃N₂, Si₃N₄, AlN, etc. [8–13]. Spray pyrolysis [14], vapor phase hydrolysis [13], hydrothermal process [12], gas condensation [15], sol-gel process [16], and combustion methods [17] are explored in order to control a refined microstructure with a uniform distribution of additives in thin ZrO₂ grain surface layers.

As such Cr^{3+} is hardly soluble in ZrO_2 in a significant amount to stabilize in c- and t-phases by a conventional method [18–21]. ZrO_2 admixed with Cr_2O_3 has applications of catalytic uses in production of H_2 by H_2O dissociation, in producing H_2 and carboxylic acids from water and aldehyde, in decomposition of CHClF₂, in production of green chromophores [20, 21], and as a potential conductor in magneto-hydrodynamic generators [18, 20]. Stabilized c-ZrO₂ is specially used as oxygen sensor [16], solid fuel cells [22], ceramic components [19] and as catalyst or catalyst promoter in synthesizing alcohol by hydrogenation of CO [20]. It has plenty of oxygen vacancies to act as active sites in catalytic activity [23].

A partially stabilized or a multiphase ZrO_2 forms transformation toughened composites [1, 2]. A finescale precipitate of m-ZrO₂ and/or t-ZrO₂ in a stabilized c-ZrO₂ matrix improves toughness [1]. It gives a new strengthening mechanism in composites by a strong macroscopic interaction between components [1, 24].

In this article, we report synthesis of Cr^{3+}/Cr^{4+} stabilized c-ZrO₂ nanoparticles with a new chemical method [25] with dispersed metal cations in a polymer of sucrose and polyvinyl alcohol (PVA). Dispersed Cr^{3+}/Cr^{4+} cations with polymer molecules easily dissolve in a sufficient amount up to 30 at.% (of the total metal cations) in an amorphous precursor structure of Zr⁴⁺ cations. Stabilized c-ZrO₂ nanoparticles appear on a reconstructive decomposition and combustion of precursor at temperature as low as 250°C. A modified microstructure develops of dispersed t-and/or m-phase(s) in c-ZrO₂ at 900 to 1050°C. The results are presented with structural and optical studies of the specimens. Substantially stable c-ZrO₂ forms and exists in small particles in support of an intergranular amorphous phase with a thin molecular grain surface layer of the Cr^{3+}/Cr^{4+} additives.

2. Experimental details

2.1. Synthesis

A polymer precursor with dispersed Zr^{4+} and Cr^{3+}/Cr^{4+} cations in a specific ratio is obtained by reaction of analytical grade (i) $ZrO(OH)_2 \cdot xH_2O$, (ii) $(NH_4)_2Cr_2O_7$, (iii) sucrose, and (iv) PVA. A freshly prepared $ZrO(OH)_2 \cdot xH_2O$ by hydrolysis of $ZrO(Cl)_2 \cdot 8H_2O$ with NH₄OH in an aqueous solution is used. The hydrolysis reaction follows as

$$ZrOCl_{2} + (2 + x)H_{2}O$$

$$\Rightarrow ZrO(OH)_{2} \cdot xH_{2}O + 2H^{+} + 2Cl^{-} \qquad (1)$$

According to it, both the 2H⁺ and 2Cl⁻ ion concentrations are as large as twice the initial concentration, which was $\sim 0.5 \text{ mol/dm}^3$ (1 dm³ = 1 L), in $ZrO(Cl)_2 \cdot 8H_2O$ solution. The reaction proceeds if they react. NH₄OH thus has been added drop wise in order to probe the influence of the 2H⁺ and 2Cl⁻ ions produced by the hydrolysis on the formation processes of $ZrO(OH)_2 \cdot xH_2O$ in an amorphous structure. It reacts with HCl and forms NH₄Cl, which is soluble in water and thus goes to the solution. Average ionic strength of the solution with $ZrO(OH)_2 \cdot xH_2O$ sol or gel thus way does not increase much to govern a controlled reaction in cold water at room temperature. As soon as the $ZrO(OH)_2$ molecules appear recombine one another via oxobridging in an amorphous structure in association with H₂O molecules.

As summarized in Fig. 1, the recovered $ZrO(OH)_2 \cdot xH_2O$ sample was washed in distilled water and then pulverized and dissolved in nitric acid in a 0.5 mol/dm³ solution. Cr⁶⁺ cations were added in a predetermined ratio through an aqueous (NH₄)₂Cr₂O₇ solution in 0.5 mol/dm³ concentration with a continuous magnetic stirring. Addition of sucrose and PVA (mol. wt. 1,25,000) by 50 to 70% in

Figure 1 Schematic diagram of forming a polymer precursor with metal cations in an aqueous sucrose-PVA solution and its decomposition to ZrO_2 nanopowder.

a batch of 25 g sample yields a final polymer precursor solution in a transparent light green color. A 13:1 molar ratio is maintained in sucrose and PVA polymers. It prevents unwanted phase separation in metal cations.

The obtained solution is dried into a precursor mass in a dark black characteristic color by evaporating the excess water over a water bath (of Julabo model HD-4) at 50 to 80°C. The latter is pyrolysed into a fluffy powder in a light brown to deep blue color, depending upon the Cr^{3+}/Cr^{4+} content, by heating over a hot plate at 250°C in air. A further calcination at 600 to 900°C results in a stabilized ZrO₂ nanopowder. A series of samples with Cr^{3+}/Cr^{4+} contents up to 30 at.% thus have been obtained after calcining from the amorphous polymer precursor mass at representative temperatures between 250 and 1050°C in air.

2.2. Characterization and measurements

Thermal decomposition and *in situ* combustion of polymer precursor mass into a refined ZrO_2 powder are studied with thermogravimetric analysis (TG) and differential thermal analysis (DTA) by heating the specimen at 5°C/min in a thermal analyzer (Model DT-40, Shimadzu Co. Kyoto, Japan). Phase analysis is carried out with x-ray diffraction of representative samples with the help of a Philips PW-1804 x-ray powder diffractometer with filtered Cu K α radiation of $\lambda = 0.15418$ nm wavelength.

Average crystallite size *d* is calculated from width $\Delta 2\theta_{1/2}$ in characteristic peaks with the Debye Scherrer

relation [26]. Specific surface area in particles is studied with N_2 gas adsorption with BET measurements [27]. Size and morphology of crystallites and particles, or the clusters of small crystallites, in powder are studied with a scanning electron microscope (SEM) of JEOL model JSM-5800 and a transmission electron microscope (TEM) of model-JEM 2000 CX. The final chemical compositions of Cr³⁺/Cr⁴⁺ modified ZrO₂ samples are confirmed by in situ EDX analysis with SEM micrographs in conjunction with an energy dispersive x-ray spectrum analyzer. The sample in TEM analysis was prepared by dispersing powder in alcohol over an ultrasonic bath. A drop of suspension was carefully placed with a syringe on a carbon coated Formvar film predeposited on a copper grid, which was ultimately loaded with sample in the microscope for the analysis.

The presence of Cr^{3+} and Cr^{4+} are analyzed in the stating polymer precursor as well as in the derived ZrO_2 nanopowders by their chemical tests [28]. This is further analyzed and confirmed by their electronic absorption spectra. The absorption spectrum (190 to 700 nm region of the electromagnetic spectrum) is measured of powder dispersed in a thin layer (of 2 to 10 μ m thickness) over a transparent optical quartz plate with an uv-visible (Shimadzu UV-3100) spectrophotometer.

3. Results and discussion

3.1. Reaction process in formation of polymer precursor

As demonstrated in Fig. 1, the addition of sucrose followed by PVA (dissolved in water) to a transparent mixed solution (say A) of $Zr(OH)_4 \cdot xH_2O$ and $(NH_4)_2Cr_2O_7$ in a specific ratio results in a specimen of dispersed metal cations in a polymer matrix of sucrose and PVA polymer molecules. The sucrose reacts with (NH₄)₂Cr₂O₇ in the solution and reduces its oxidation state of chromium $Cr^{6+} \rightarrow Cr^{4+}/Cr^{3+}$ with a change of its initial color from orange to a light green one. The light green equilibrium color becomes stable at a stable $Cr^{4+} \Leftrightarrow Cr^{3+}$ configuration in the polymer as per the experimental conditions. A similar change in color also appears on a reaction of PVA with solution A but that reverts in a characteristic light orange color within a period of 5 to 10 h of the reaction in cold water at room temperature.

A characteristic orange color in $(NH_4)_2Cr_2O_7$ occurs in a ligand-metal $(L \rightarrow Cr^{6+})$ charge transfer band otherwise $Cr^{6+}(3d^0)$ has no spectrum in this region. Here, the ligand L is formed by O^{2-} anions surrounding the Cr^{6+} cations. The original Cr^{6+} oxidation state is thus reduced to Cr^{4+} or Cr^{3+} on dispersing in sucrose or PVA polymer molecules in water. This is analyzed by a chemical test as follows. In a 20 ml of (NH₄)₂Cr₂O₇ solution (with PVA or sucrose) in water is added 0.1 g of KI followed by 5.0 ml CH₃COOH in a beaker. The sample is covered with a watch glass, to avoid its oxidation with air, and stirred for a few min to let the iodide oxidize by Cr^{4+} in the sample as per the $I^- + Cr^{4+} \rightarrow I_2 + Cr^{3+}$ reaction. The I_2 turns color of the sample from light green into a violet, which changes in an intense blue color if adding starch. The blue color disappears instantaneously on

Figure 2 Electronic absorption spectra in (a) Cr^{6+} in 0.0002 M $(NH_4)_2Cr_2O_7$ in water and that of transformed into Cr^{4+} and Cr^{3+} after adding 2 vol% of (b) sucrose or (c) PVA in 10% solution in water. *Charge transfer bands.

adding sodium thiosulphate, reduces iodine to iodide, $I_2 + S_2O_3^{2-} \rightarrow I^- + S_4O_6^{2-}$, again. The intense blue color in the so called "charge transfer band" disappears as the I₂-starch complex breaks down.

The electronic absorption spectra of Cr^{6+} : $(NH_4)_2Cr_2O_7$ before (a) and after adding (b) sucrose or (c) PVA (Fig. 2) in the acidic solution in water confirm the transformation of Cr^{6+} to (b) Cr^{4+} or (c) Cr^{4+}/Cr^{3+} . As summarized in Table I, two

TABLE I The electronic absorption bands in modified $Cr^{6+} \rightarrow Cr^{4+}/Cr^{3+}$ oxidation state in $(NH_4)_2Cr_2O_7$ dissolved in sucrose and PVA polymer in water

Band positions (nm)				
(NH ₄) ₂ Cr ₂ O ₇	(NH ₄) ₂ Cr ₂ O ₇ in sucrose	(NH ₄) ₂ Cr ₂ O ₇ in PVA	Transitions	
		625 (vw)	${}^{4}A_{2\sigma} \rightarrow {}^{2}E_{\sigma} (Cr^{3+})$	
		578 (vw)	${}^{3}T_{1} \rightarrow {}^{3}A_{2} (Cr^{4+})$	
440 (vw)	_	_	${}^{1}A_{1g} \rightarrow {}^{1}T_{2g} (Cr^{6+})$	
	-	437 (vw)	${}^{4}A_{2g} \rightarrow {}^{4}T_{2g} (Cr^{3+})$	
350 (ms)	-	_	${}^{1}A_{1g} \rightarrow {}^{3}A_{2g} (Cr^{6+})$	
	336 (vs)	319 (w)	${}^{3}T_{1} \rightarrow {}^{3}T_{1} (Cr^{4+})$	
	-	300 (ms)	${}^{4}A_{2g} \rightarrow {}^{4}T_{1g} (Cr^{3+})$	
	274 (s)	273 (vs)	${}^{3}T_{1} \rightarrow {}^{3}T_{2} (Cr^{4+})$	
258 (vs)	250 (ms)	247 (vs)		
224 (s)	-	_	Charge transfer bands	
	231 (vw)		-	
	216 (vw)	217 (vw)	Vibronic bands	
	201 (vw)	206 (vw)		

The relative intensities in the bands are given in the parentheses; vs: very strong, s: strong, ms: medium strong, w: weak, and vw: very weak intensity values.

bands at 440 and 350 nm in spectrum (a) are in ${}^{1}A_{1g} \rightarrow {}^{3}A_{2g}$ and ${}^{1}A_{1g} \rightarrow {}^{1}T_{2g}$ electronic transitions of $Cr^{6+}(3d^0)$ [28, 29]. Other two bands, which appear at much lower λ (or higher energy) at 258 and 224 nm, are the $L \rightarrow Cr^{6+}$ charge transfer bands which occur through a ligand with O^{2-} anions [28]. The bands due to $Cr^{4+}(3d^2)$ are developed at 336 nm $({}^{3}T_{1} \rightarrow {}^{3}T_{1})$ and 274 nm $({}^{3}T_{1} \rightarrow {}^{3}T_{2})$ in spectrum (b) and those are shifted at 319 nm and 273 in spectrum (c). A third band in Cr^{4+} (${}^{3}T_{1} \rightarrow {}^{3}A_{2}$) has developed at 578 nm in spectrum (c). Bands from Cr^{3+} (3d³) in spectrum (c) are observed at 625 nm (${}^{4}A_{2g} \rightarrow {}^{2}E_{g}$), 437 nm (${}^{4}A_{2g} \rightarrow {}^{4}T_{2g}$), and 300 nm (${}^{4}A_{2g} \rightarrow {}^{4}T_{1g}$). All the transitions except the ${}^{4}A_{2g} \rightarrow {}^{2}E_{g}$ in Cr^{3+} are spin allowed and thus appear with a large intensity. An easier 3d-3d excitation in Cr^{3+} with three free 3d electrons occurs in the bands at lower energy in comparison to those in Cr⁴⁺ with a lesser number of only two free 3d electrons. The sharp (and weak) bands observed between 250 and 200 nm in spectra (b) and (c) are possibly vibronic bands.

Sucrose and PVA forms a polymer with dispersed metal cations in water. Here, sucrose plays a multifunctional role. At first, it forms a complex with metal cations by coordinating through hydroxyl groups in small micelles. The micelle circumvents selective precipitation of encapsulated cations within it while evaporating the excess water in the solution to a dried precursor mass. Sucrose, being in excess to the cations, behaves as a strong chelating agent and ensures an atomistical distribution of cations in the polymer structure.

As soon as added to the solution the sucrose gets hydrolyzed to fructose and glucose, which ultimately oxidizes to gluconic acid or a poly hydroxyl acid,

$$C_{12}H_{22}O_{11}(sucrose) + H_2O$$

$$\rightarrow C_6H_{12}O_6(glucose) + C_6H_{12}O_6(fructose),$$

$$C_6H_{12}O_6(fructose)$$

$$\rightarrow C_6H_{12}O_7(gluconic acid)$$
(2)

Gluconic acid, with a carboxylic acid group in one end and five linear hydroxyl groups, easily forms the metal ion complex. It forms a branched polymer with PVA in water [25]. When dried the sample obtained with sucrose in presence of PVA in a small 10% amount results in a desirably crushable, fluffy powder. In addition to dispersing metal cations in a network structure, the polymer matrix serves as an internal fuel to decompose and burn out the sample spontaneously into a refined powder in Cr^{3+}/Cr^{4+} stabilized ZrO_2 nanoparticles.

3.2. Reconstructive decomposition and combustion in precursor

In order to get refined ZrO_2 particles in controlled size in few nanometers, the polymer precursor powder is first heated over a hot plate at low temperature as ~250°C. At this temperature, insufficient to induce its spontaneous combustion, it slowly disintegrates by a dynamic reconstructive organization of polymer molecules in small groups or particles in a self-controlled manner. As such the ZrO_2 ceramic components are encapsulated in thin surface layers of decomposed polymer molecules (mostly carbon) in a dark black color. At higher temperatures, the surface layer reacts with oxygen in air and goes away as oxidized gas species, leaving behind pure ZrO_2 ceramic particles in light brown to blue color as per the Cr^{3+}/Cr^{4+} additives. A continuous release of part of the material in a gas form from the surface layers (keep the particles separated apart) inhibits the particles to recombine and grow in a strictly controlled manner at 900°C or lower temperatures used in this example.

A reconstructive molecular decomposition of precursor at controlled combustion is highly effective to control size and/or morphology of final ZrO₂ particles. This is not possible by an adiabatic combustion process. For example, combustion of a precursor of metal cations dispersed in oxalic dihydrazide yields only a mixture of yttria stabilized c- and t-ZrO₂ in 1 to 5 μ m particles [17]. No particles in a controlled nanometer size appear as obtained here as described below. As the metal salt and the organic compound act as oxidizing and reducing agents, respectively, a strong reductionoxidation (redox) reaction takes place during the combustion. A large amount of heat and gas evolves rapidly in a very short period of time. The heat evolved leads the precursor to disintegrate instantaneously into refined particles and those succeed to recombine in rather big groups on highly reactive nascent surfaces. A large volume of gas produced does promote disintegration of precursor into small dispersed particles, but it lasts over a very limited period of time of a few seconds only and by the time most of the gas escapes and does not take an active part to inhibit recombination of particles even in a fast cooling after the combustion.

Fig. 3 shows (a) DTA and (b) TG curves in thermal decomposition and combustion in a continuous heating of 25 mg of polymer precursor (10 at.% Cr^{3+}/Cr^{4+} content and dried at 80°C over a water bath) at 5°C/min in air. A molecular decomposition with a predominant combustion occurs with an exothermic peak

Figure 3 (a) DTA and (b) TG thermograms in a polymer precursor (with 10% Cr^{3+} and Cr^{4+} additives) dried over a water bath at 80°C. The data are collected by heating the sample at 5°C/min in air. A schematic diagram in thermal excitation of the precursor by absorption of enthalpy ΔH followed by dissociation and combustion is given in the inset.

TABLE II The total mass loss and structural H_2O in different precursors of zirconium hydroxide or oxyhydroxides

Precursor	<i>x</i> -value	Mass loss (%)	Reference
ZrO(OH) ₂ anhydrate		12.8	
$ZrO(OH) \cdot xH_2O$ hydrate	1.0	22.6	Huang et al. ^a
$ZrO(OH) \cdot xH_2O$ gel	7.5	58.0	Present work
Zr(OH) ₄ anhydrate		22.6	
Hydrous zirconia $ZrO_2 \cdot xH_2O$	1.9	21.5	Huang et al.
$ \begin{array}{c} ZrO(OH) \cdot xH_2O\text{-polymer} \\ (10 \text{ at.}\% Cr^{3+}/\text{Cr}^{4+}) \end{array} $		59.0	Present work

^aThe data after Huang et al. in [30].

in combustion at $T_{PC} = 445^{\circ}C$ in the DTA with a total $\Delta M = 59.0\%$ mass loss in the TG curve. As compared in Table II, a total 22.6% mass loss lies in $ZrO(OH)_2 \cdot H_2O \rightarrow ZrO_2 + 2H_2O$ molecular decomposition while 12.8% in the case of anhydrite $ZrO(OH)_2$ or 22.6% in anhydrite $Zr(OH)_4$. A hydrous zirconia, $ZrO_2 \cdot xH_2O$, $x \sim 1.9$, has 21.5% mass loss [30]. Thus the additional value in our polymer precursor imparts primarily from the polymer matrix with the structural H₂O molecules.

As marked over the TG curve (Fig. 3a), the mass loss in the polymer precursor proceeds in three successive steps I, II and III between the points of A, B, C and D. Signal I, which involves a very small $\Delta M \sim 2\%$ value and lasts to ~150°C, indicates desorption of part of H₂O and/or interstitial gases adsorbed during the processing. Generation of CO, CO₂ and NH₃ gases are common in processing of a polymer precursor with metal cations in an acidic medium in this example. Signal II has $\Delta M \sim 38\%$ and extends to 430°C while signal III, $\Delta M \sim 19\%$, lasts to point D at $T_{CC} \sim 470°$ C. No further loss in mass appears in continuing the heating over higher temperatures above 470°C in air.

In principle, a desorption or decomposition is an endothermic process. It involves absorption of heat (or enthalpy ΔH) by excitation of the system through a series of energy levels (as shown in the inset to Fig. 3) in a molecular rearrangement to the limit of its thermodynamic stability from which it ultimately occurs. This is very much reflected in by desorption of the H₂O and interstitial gases in the endothermic signal I between points A and B (Fig. 3). Also the molecular decomposition of the polymer precursor at early temperatures in signal II begins with an altogether endothermic heat output in the DTA. A monotonically increasing rate of heat output leads to a spontaneous combustion of the sample in a prominent exothermic signal III at subsequent temperatures.

As portrayed in Figs 4 and 5, the values are decreasing in both T_{PC} and T_{CC} with an increasing value of Cr^{3+}/Cr^{4+} content (δ). Extrapolations of two curves to $\delta \rightarrow 0$ yield their maximal values of $T_{PC}^{m} = 465^{\circ}C$ (Fig. 4) and $T_{CC}^{m} = 662^{\circ}C$ (Fig. 5) in the virgin polymer with Zr⁴⁺ cations. The present values are as large as 52% of those of 385°C and 437°C, respectively, observed in the precursor with $\delta \sim 30\%$. The effect of δ in diminishing the final value in T_{PC} or T_{CC} seems to be the most prevalent at a specific value of it around 13%. In the T_{PC} vs. δ curve in Fig. 4, it thus reflects

Figure 4 A plot of the exothermic peak temperature T_{PC} in DTA with a function of Cr^{3+}/Cr^{4+} content in the polymer precursor. Note the diminution in the T_{PC} value from 465°C to 378°C on adding the Cr^{3+} and Cr^{4+} in an amorphous polymer structure.

Figure 5 (a) A plot of complete combustion (constant weight) temperature T_{CC} in TG with a function of Cr^{3+}/Cr^{4+} content in the polymer precursor. Curve (b) is the simulation to that in (a). An extrapolation of a linear plot over the early data points of ABCD intersects their tangents at points C and D at (a) 12.0% and (b) 12.5% of Cr^{3+}/Cr^{4+} contents.

in a peak in T_{PC} at 407°C at this specific value. T_{CC} vs. δ curve, in Fig. 5, changes significantly in its slope at around this value ($T_{CC} \sim 490^{\circ}$ C) as marked therein by point P. In an inorganic precursor with hydrazine $(NH_2)_2 \cdot H_2O$ [20], Cr^{3+} additive is rather shown to improve the temperature of the recrystallization T_C into ZrO₂ nanoparticles. A large $T_C = 477^{\circ}C$ value (which can be treated as our T_{PC}^m value) thus appears at $\delta = 5\%$ and that shifts further to 615 or 713°C at $\delta = 20$ or 30% [20].

A simulation to the experimental T_{PC} data points with a function of δ , i.e.

$$T_{\rm PC} = f(\delta), \tag{3}$$

with

$$f(\delta) = T_{\rm PC}(0) - \alpha \delta - \beta, \qquad (4)$$

represents the results, qualitatively, at δ in the 0 to 0.30 range. Here, β is a parameter which governs an induced combustion in refined polymer molecules according to their thermal history developed at lower temperatures in heating as a function of temperature at a given rate. Obviously, it is operative only over a specific range of temperature (i.e., 415 to 440°C according to the observed data in Fig. 4) over which the polymer refines in smaller units in support of the Cr³⁺/Cr⁴⁺ additives in process to the spontaneous combustion. If we ignore it, for a time being, the relation (3) simplifies to the equation of a straight line

$$T_{\rm PC} = c - \alpha \delta \tag{5}$$

with the constant $c = T_{PC}$ (0), the value of T_{PC} at $\delta = 0$. It reproduces the results (shown by the solid line in Fig. 4) with $c = 465^{\circ}$ C and $\alpha = -5.3^{\circ}$ C per unit value of δ . In a realistic case, β is a function of temperature in the region in question such that it passes through a maximum in superposition with the straight line function to accord with the observed cure (marked by the dots). It can be ascribed in terms of an exponential function as often used to describe a first order phase transformation [31].

Similarly, an empirical exponential function,

$$T_{\rm CC} = \gamma T_{\rm CC}^{\rm m} \exp \left[\frac{F_{\rm Cr}}{F_{\rm Zr}}\right]^n + f\left(T_{\rm CC}^{\rm i}\right) \qquad (6)$$

with $F_{\rm Cr}$ and F_{Zr} as the effective fractions of the ${\rm Cr}^{3+}/{\rm Cr}^{4+}$ and ${\rm Zr}^{4+}$ cations in the polymer structure, may be used to ascribe the δ dependent $T_{\rm CC}$ in this example. It reproduces

$$T_{\rm CC} = \gamma T_{\rm CC}^{\rm m} = T_{\rm CC}^{\rm m} \tag{7}$$

at $F_{\rm Cr} = 0$ with $\gamma = 1$ the ideal value in the polymer before the Cr³⁺/Cr⁴⁺ additives. The second term, $f(T_{\rm CC}^{\rm i})$, in Equation 6 describes a manifestation in the instantaneous $T_{\rm CC}$ value (which is denoted as $T_{\rm CC}^{\rm i}$) by the internal heating which initiates at a specific $F_{\rm Cr}$ and $F_{\rm Zr}$ combination. It is a complex function of $T_{\rm CC}^{\rm i}$ which varies from the point to point according to the heat produced during the process and the average heat capacity. If it is assumed to be negligibly small relative to the first term, then the above relation simply reduces as

$$T_{\rm CC} = \gamma T_{\rm CC}^{\rm m} \exp \left[\frac{F_{\rm Cr}}{F_{\rm Zr}}\right]^n \tag{8}$$

Substituting the values for $F_{\rm Cr} = \delta$ and $F_{\rm Zr} = 1 - \delta$, in the assumption that all of the ${\rm Cr}^{3+}/{\rm Cr}^{4+}$ and ${\rm Zr}^{4+}$ metal cations in the specimen formed a polymer structure with the PVA and sucrose polymer molecules, relation (8) represents

$$T_{\rm CC} = \gamma T_{\rm CC}^{\rm m} \exp \left[\frac{\delta}{1-\delta}\right]^n \tag{9}$$

It describes well the $T_{\rm CC}$ vs. ${\rm Cr}^{3+}/{\rm Cr}^{4+}$ content plot in the solid curve a in Fig. 5. A best fit (the dashed curve b) to the experimental data appears assuming an empirical 0.95 value (which is not very off the ideal $\gamma = 1$ value) for the correlation constant γ with a value for the exponent $n = \frac{1}{2}$. A small difference in the two curves dictates the contribution of $f(T_{CC}^{i})$, especially in the high Cr^{3+}/Cr^{4+} contents above 10 at.%. It determines a so called "delayed combustion" of the precursor at manifested temperatures. This factor seems to be dominating in the case of the inorganic precursor with hydrazine so that the T_{CC} value increases with the function of Cr^{3+}/Cr^{4+} contents in an opposite trend as mentioned above. An extrapolation of a linear plot of the initial data points of ABCD intersects the tangents to the two curves a and b at points C and D at 12.0 and 12.5% of Cr^{3+}/Cr^{4+} contents, respectively. This straight line ABCD represents the Cr³⁺/Cr⁴⁺ limited dynamics of $T_{\rm CC}$ in the spontaneous combustion of the precursor. A deviation from the experimental curve (a) starts in autoignition as early as at around 5% Cr³⁺/Cr⁴⁺ additives.

The present model variations of the $T_{\rm CC}$ and $T_{\rm PC}$ values with the Cr³⁺/Cr⁴⁺ contents demonstrate the fact that the metal cations impart the polymer structure of precursor and in turn influence the kinetics of (i) its combustion process and (ii) formation of stabilized ZrO₂ by reaction of its decomposed species of metal cations during the combustion. The Cr³⁺/Cr⁴⁺ cations behave as an internal catalyst to facilitating the combustion at moderate temperature. This is the reason that they function as a stabilizing agent in forming stabilized ZrO₂ in refined particles at moderate temperature insufficient to induce their growth further by a surface diffusion controlled recombination reaction.

3.3. Phase analysis

Fig. 6 compares x-ray diffraction in (a) PVA polymer and the polymer precursors derived with Zr^{4+} metal cations with (b) 10 at.% and (c) 20 at.% Cr^{3+}/Cr^{4+} additives. All the three diffractograms are very similar with two broad halos at wavevectors in the range of $q_1 = 9$ to 12 nm⁻¹ and $q_2 = 28$ to 30 nm⁻¹ (defined by $q_i = 4\pi \sin \theta / \lambda$) in characteristics of their amorphous structures. Average positions in the derived polymer precursor have a marginal shift, as much as 3.1 nm⁻¹, in two halos in comparison to those in the virgin PVA or the PVA-sucrose polymers. This is expected in the predominant local structure of the PVA-sucrose

Figure 6 X-ray diffraction in (a) PVA polymer and the polymer precursors with Zr^{4+} metal cations with (b) 10 or (c) 20% Cr^{3+}/Cr^{4+} additives. A prominent halo q_1 appears at wavevector (a) 12.0, (b) 9.0, or (c) 8.9 nm⁻¹ with a relatively weak halo q_2 at 28.2, 29.5, and 28.2 nm⁻¹, respectively.

polymer component in the final polymer precursor. Other details of the individual q_i values and bandwidths $\Delta 2\theta_{1/2}$ observed in the different samples are given in Table III.

A recrystallization from an amorphous precursor state results in stabilized ZrO_2 nanoparticles at 250 to 950°C. For example, Fig. 7 compares x-ray diffraction of stabilized ZrO_2 with 10% Cr^{3+}/Cr^{4+} additives by calcining the precursor at (a) 250, (b) 800, (c) 900, and (d) 950°C for 4 or 2 h. A single phase of c-ZrO₂ nanoparticles forms at 250 to 800°C in (a) and (b). The diffractogram is fairly matching the standard diffractogram in bulk c-ZrO₂ [32a]. Moreover, it is found that, on raising the temperature as 900°C in (c), part of the product converts into t-ZrO₂ nanoparticles, resulting in a composite microstructure of dispersed t-ZrO₂ nanoparticles in the matrix of c-ZrO₂ nanoparticles.

TABLE III Average positions (in wavevector in nm^{-1}) and bandwidths (in degree) in q_1 and q_2 x-ray diffraction halos in the virgin and derived PVA-sucrose polymer precursors

	Halo q_1		Halo q_2	
Sample	Position	Bandwidth	Position	Bandwidth
PVA polymer	12.0	14.0	28.2	10.0
PVA-sucrose polymer	12.0	13.0	28.2	10.0
Derived PVA-sucrose precursor (10 at.% Cr^{3+}/Cr^{4+})	9.0	10.0	29.5	15.0
Derived PVA-sucrose precursor (20 at.% Cr^{3+}/Cr^{4+})	8.9	8.0	28.2	18.0

Figure 7 X-ray diffraction in stabilized ZrO₂ nanoparticles after calcining from the polymer precursor with 10% Cr^{3+}/Cr^{4+} at (a) 250, (b) 800, (c) 900, or (d) 950°C for 2 h. Part of c-ZrO₂ in (a) or (b) transforms to t-ZrO₂ in (c) while to t- and m-ZrO₂ in (d) as marked by (*hkl*) with subscript t or m. *h-Cr₂O₃.

This maintains a thermodynamic equilibrium structure of derived specimen at or below 900°C temperatures. No additives of Cr^{3+}/Cr^{4+} cations segregate in an independent crystalline phase, confirming that they are dissolved in a solid solution with c- or t-ZrO₂ in nanoparticles.

A part of solid state phase separation occurs in h-Cr₂O₃ nanoparticles (R3c hexagonal corundum crystal structure [32b]) along with a polymorphic transformation in m-ZrO2 at expense of the c-ZrO2 in nanoparticles on raising the temperature further at 950°C as in Fig. 7d. A similar result of h-Cr₂O₃ phase separation follows in a prolong heating at 900°C for 15 h or longer. The result envisages that the $c-ZrO_2$ nanoparticles have presumably nucleated and grown in a solid solution with Cr^{3+}/Cr^{4+} cations through a high energy amorphous state. The capacity of c-ZrO₂ to dissolve Cr^{3+}/Cr^{4+} in a solid solution varies with its size (determines an increased value of the total Gibb's free energy and in turn a manifested reactivity in small particles) and the temperature. Small c-ZrO₂ crystallites processed at effectively low temperature thus offer a manifested solubility of bulk particles. As a result, part of Cr³⁺/Cr⁴⁺ precipitates on growth of supersaturated c-ZrO₂(ss) particles with Cr^{3+}/Cr^{4+} in heating at these temperatures. The reaction in an extended heating from an amorphous polymer precursor at 900°C thus can be expressed as follows

 $\begin{array}{c} \text{Amorphous} \\ \text{precursor} \xrightarrow{900^{\circ}\text{C}} & \underbrace{\text{c-ZrO}_2(\text{ss}) \rightarrow \text{c-ZrO}_2 + \text{h-Cr}_2\text{O}_3,}_{\text{c-ZrO}_2 \rightarrow \text{t-ZrO}_2,} \\ & \underbrace{\text{t-ZrO}_2 \rightarrow \text{t-ZrO}_2,}_{\text{c-ZrO}_2 \rightarrow \text{t-ZrO}_2(\text{ss})} \end{array}$ (10)

A phase transformation of t-ZrO₂(ss) \rightarrow m-ZrO₂ + h-Cr₂O₃ occurs in extended heating to 15 h at 900°C. An increase in temperature above 900°C promotes it to appear in a single m-ZrO₂ phase with incipient growth of h-Cr₂O₃, a = 0.4954 and c = 0.1358 nm, in 2 h at 1050°C (Fig. 8). The lattice parameters of a = 0.5140 nm, b = 0.5195 nm, c = 0.5305 nm, and $\beta = 99^{\circ}23$, calculated in $P2_1/c$ m-ZrO₂ structure with the observed peak positions (d_{hkl} interplanar spacings) in the diffractogram, are bit decreased by $\sim 0.2\%$ in comparison to the a = 0.5148 nm, b = 0.5203 nm, c = 0.5316 nm, and $\beta = 99^{\circ}23'$ bulk values [32c]. It is feasible if part of Cr^{3+}/Cr^{4+} additives (of lower ionic radius of 0.076 (Cr³⁺) or 0.069 (Cr⁴⁺) nm relative to $0.086 \text{ nm in } Zr^{4+}$ in octahedral sites [33]) retain in a solid m-ZrO₂ solution.

The Cr^{3+}/Cr^{4+} additives facilitate the reaction of forming t-ZrO₂(ss) if used in an effectively large amount of 20 at.%, or even more. A specimen of t-ZrO₂(ss) thus appears with h-Cr₂O₃ as early as in

Figure 8 X-ray diffraction in phase transformation of c- or t-ZrO₂ into m-ZrO₂ with a differential h-Cr₂O₃ (*) separation at 1050°C in 2 h; (a) 10 or (b) 20% Cr^{3+}/Cr^{4+} contents.

Figure 9 X-ray diffraction in stabilized ZrO₂ nanoparticles after calcining from the polymer precursor with 20% Cr^{3+}/Cr^{4+} at (a) 250, (b) 600, (c) 800, and (d) 900°C. Phase transformation from c-ZrO₂ to t-ZrO₂ starts with h-Cr₂O₃ (*) segregation at 800°C. ** t-CrO₂ appears at 900°C in (d).

2 h of heating at a relatively low 800° C temperature (Fig. 9). A new t-CrO₂ phase ($P4_2/mnm$ tetragonal structure [32d]) precipitates at temperature as high as 900°C. It converts to h-Cr₂O₃ in raising the temperature further as at 1050°C in Fig. 8. A content of Cr³⁺/Cr⁴⁺ above 20 at.% is not so useful in preparing a solid ZrO₂ solution. It adds impurities of crystalline h-Cr₂O₃ even at lower temperatures as 250°C.

The present results differ from those of Cr³⁺ stabilized ZrO₂ recrystallized from an amorphous ZrO₂-Cr₂O₃ precursor via a precipitation reaction of the metal chlorides with hydrazine $(NH_2)_2 \cdot H_2O$ in water and then drying the recovered precipitate at 120°C under a reduced pressure [20]. In this case, t-ZrO₂ forms instead of c-ZrO₂ even at low 465 to 750°C temperatures by dissolving as much Cr₂O₃ as 20 at.%. At higher 900°C and above temperatures, the Cr^{3+} precipitates and the t-ZrO₂ converts into m-ZrO₂. A mixture in cand m-ZrO₂ appears at larger Cr₂O₃ contents till 33 at.%. Cr^{4+} cations in combination with those of Cr^{3+} seems responsible in this example to stabilize c-ZrO₂ in a single phase in controlled size in few nanometers. As the results are summarized in Table IV, a pure c-ZrO₂ forms in support of 4 to 10 at.% Cr³⁺/Cr⁴⁺ additives. They support an improved stability in c-ZrO₂ nanoparticles, especially in the presence of a minority phase of the other ZrO_2 polymorphs, so that they stand as such until the final temperature lies under 900°C.

The stabilized c-ZrO₂ with 1 at.% Cr^{3+}/Cr^{4+} additives in nanoparticles have a larger lattice parameter

TABLE IV The chemical compositions and experimental conditions of formation of Cr^{3+}/Cr^{4+} modified ZrO_2 in three polymorphs at different temperature from polymer precursors

Cr^{3+}/Cr^{4+}	Heating			
Content (at.%)	Temp. (°C)	Time (h)	Identified ZrO ₂ polymorphs	
0	250-500	2–4	c-ZrO ₂ , m-ZrO ₂ (10)	
	800	2	m-ZrO ₂	
2–4	250-800	2–4	c-ZrO ₂ , t-ZrO ₂ (20), m-ZrO ₂ (5)	
5-10	250-800	2–4	c-ZrO ₂	
	900	2	c-ZrO ₂ , t-ZrO ₂ (25)	
	900	15	c-ZrO ₂ , t-ZrO ₂ (30), m-ZrO ₂ (20), h-Cr ₂ O ₃	
	950	2	c-ZrO ₂ , t-ZrO ₂ (25), m-ZrO ₂ (35), h-CrO ₂	
	1050	2	m-ZrO ₂ , h -Cr ₂ O ₃	
20	250-600	2–4	c-ZrO ₂	
	800	2	c-ZrO ₂ , t-ZrO ₂ (35), h-Cr ₂ O ₃	
	900	2	c-ZrO ₂ , t-ZrO ₂ (35), h-Cr ₂ O ₃ , t-CrO ₂	
	950	2	m-ZrO ₂ , c-ZrO ₂ (20), t-ZrO ₂ (10), h-Cr ₂ O ₃	
	1050	2	m-ZrO ₂ , h-Cr ₂ O ₃	
30	250-600	2–4	$c-ZrO_2$, $h-Cr_2O_3$	
	800 to 1050	2	Same as with 20% Cr^{3+}/Cr^{4+} additives	

The volume fractions (%) are given in the parentheses in the minority ZrO_2 phases according to the relative intensities in the characteristic x-ray diffraction peaks.

a = 0.5130 nm of pure sample of a = 0.5090 nm [32a]. An increase in the Cr^{3+}/Cr^{4+} content reflects in a bit decrease in the *a* value to 0.5070 nm at $\delta \sim 10$ at.% as per the c-ZrO₂ + $\delta Cr^{3+}/Cr^{4+} \rightarrow c$ -ZrO₂(ss) solid solution formation. It accords to an average smaller value of ionic radius in the Cr^{3+}/Cr^{4+} cations over that in the Zr⁴⁺ cations. Dissolution of Cr^{3+}/Cr^{4+} in t-ZrO₂ involves a maximum 1.0% decrease ($\delta \sim 10$ at.%) in c = 0.5220 nm and 0.28% in a = 0.3630 nm lattice parameters against a = 0.5270 and c = 0.3640 nm bulk values [32e]. No significant change occurs in the *a* value in stabilizing t-ZrO₂ by adding Cr^{3+} alone [20]. Possibly, it occupies the sites primarily along the *c*-axis.

In a composite sample, the volume fraction $V_{\rm m}$ in m-ZrO₂ nanoparticles dispersed in a matrix of c- and t-ZrO₂ may be estimated by the integrated intensities in the characteristic diffraction peaks I_i in the three phases with an empirical relation

$$V_{\rm m} = \frac{\sum_{i=1}^{m} K_{\rm m}(I_i)_{\rm m}}{\sum_{i=1}^{m} K_{\rm m}(I_i)_{\rm m} + \sum_{i=1}^{n} K_{\rm t}(I_i)_{\rm t} + \sum_{i=1}^{0} K_{\rm c}(I_i)_{\rm c}}$$
(11)

The constants $K_{\rm m}$, $K_{\rm t}$ and $K_{\rm c}$ correlate the fractional volumes $V_{\rm m}$, $V_{\rm t}$ and $V_{\rm c}$ through the integrated intensities in the respective phases. The value of *i* varies over the total numbers of peaks m, n and p in the three phases, respectively. Assuming $K_{\rm t} \sim K_{\rm c} \cong \eta K_{\rm m}$, in a close similarity in x-ray diffraction in t- and c-ZrO₂, Equation 11 simplifies

$$V_{\rm m} = \frac{\sum_{i=1}^{m} (I_i)_{\rm m}}{\sum_{i=1}^{m.n.o} [(I_i)_{\rm m} + \eta\{(I_i)_t + (I_i)_{\rm c}\}]}$$
(12)

or

$$V_{\rm m} = \frac{1}{1 + \eta \{(I_{101})_{\rm t} + (I_{111})_{\rm c}\}\{(I_{111})_{\rm m} + (I_{11\bar{1}})_{\rm m}\}^{-1}}$$
(13)

assuming the partial *I* values in the prominent (111) and (111) peaks in m-ZrO₂ while (101) peak in t-ZrO₂ and (111) peak in c-ZrO₂. A numerical value obtained by the areas (I_{111})_m and ($I_{11\bar{1}}$)_m in (111) and (111) peaks in m-ZrO₂, (I_{101})_t in (101) peak in t-ZrO₂, and (I_{111})_c in (111) peak in c-ZrO₂ satisfactorily reproduces V_m with an independently determined value of $\eta = 0.8$. The empirical $\eta = 0.8$ value used here has been analyzed with x-ray diffraction in known mixtures in three phases. As mentioned above, $\eta = 1$ is used to analyze V_c or V_t in the case of a binary c- and t-ZrO₂ mixture. The volume fractions thus obtained in the minor phases in the powders processed under different experimental conditions are given in Table IV.

Obviously, the above relation is very logical and realistic for a quantitative analysis of volume fractions in crystalline phases in a physical mixture or composite. It is very similar to the relation, as proposed earlier by Toraya *et al.* [34],

$$V_{\rm m} = \frac{PX_{\rm m}}{1 + (P - 1)X_{\rm m}} \tag{14}$$

where

$$X_{\rm m} = \frac{(I_{111})_{\rm m} + (I_{11\bar{1}})_{\rm m}}{(I_{111})_{\rm m} + (I_{11\bar{1}})_{\rm m} + (I_{101})_{\rm t} + (I_{111})_{\rm c}}$$
(15)

with an empirical 1.31 value for the correlation constant *P* to account for the nonlinearity in $V_{\rm m}$ as function of $X_{\rm m}$. Our powder ($\delta = 10$ at.% and annealed 2 h at 950°C) in Fig. 7d, has a value of $X_{\rm m} \sim 0.29$, which determines a value of $V_{\rm m} = 35\%$ through Equation 14. An exactly the same value of $V_{\rm m} = 35\%$ is obtained by application of Equation 13 developed in this work. Furthermore, as per peak intensity I = 25% (against I = 20standard value) in (311) peak in c-ZrO₂ and I = 13%(I = 15 standard value) in (211) in t-ZrO₂, volume $V_{\rm c}$ in c-phase is as much as 1.5 times in t-phase.

3.4. Size and morphology in ZrO₂ nanoparticles

The Cr^{3+}/Cr^{4+} stabilized c-ZrO₂ in small crystallites or particles are in near spherical shapes. Their final morphology or size does not change much in processing by the polymer precursor at different temperatures in the 250 and 800°C range. For example, a TEM micrograph for a c-ZrO₂ nanopowder, processed with 10 at.% Cr^{3+}/Cr^{4+} at 250°C in 2 h, is given in Fig. 10a. Average diameter in small particles is $D \sim 6$ nm. The value hardly increased from the 6 nm to 10 nm on raising the temperature from the 250°C to 800°C. On a small increase in the temperature to 900°C, part of them rearrange locally and grow in a modified acicular morphology in phase transformed t-ZrO₂ (confirmed with in situ analysis of the electron diffraction). This is shown with TEM of a selected region of the specimen (processed 2 h at 900°C) in Fig. 10b. These t-ZrO₂ particles are as long as 450 nm in 15 to 30 nm widths with aspect ratio $\phi \leq 20$. Part of the particles, which are still in c-ZrO₂ phase, retain their original spherical shpaes with no much growth ($D \sim 10$ to 20 nm).

Average d = 5 to 10 nm crystallite size, calculated by $\Delta 2\theta_{1/2}$ in the x-ray diffraction peaks with the Debye-Scherrer relation [26], compares the average size observed in the TEM micrographs. A close similarity in the values obtained in the two methods envisages that the small particles in TEM are the single crystallites. A significant lattice strain in small crystallites accounts for a reasonably smaller d value calculated without a correction of its contribution in $\Delta 2\theta_{1/2}$.

Figure 10 TEM micrograms in stabilized c-ZrO₂ or t-ZrO₂ nanoparticles with 10% Cr³⁺/Cr⁴⁺ additives after calcining from the polymer precursor at (a) 250°C and (b) 900°C for 2 h.

Figure 11 (a) TEM and (b) SEM micrograms in m-ZrO₂ nanoparticles or clusters with 10% Cr^{3+}/Cr^{4+} additives obtained after calcining from the polymer precursor at 1050°C for 2 h.

The crystallites in m-ZrO₂ form in an altogether different morphology in platelets or cubides in $d \sim 25$ nm (Fig. 11a) in heating from the polymer precursor at 1050°C for 2 h. They are arranged further in clusters of $D \sim 300$ nm average diameter. As many crystallites as $(D/d)^3 \sim 10^3$ are thus contained in a cluster in approximation of spherical shapes.

A spherical particle in radius $r = \frac{1}{2}D$ involves a specific surface area $A = 4\pi r^2 \div 4/3 \pi r^3 \rho \equiv 3/r\rho$, where ρ is its density. Thus a value of $A \sim 200 \text{ m}^2/\text{g}$ (in comparison to the 180 m²/g observed from the BET measurements) is calculated for a particle of r = 2.5 nm with $\rho = 6.10$ g/cm³. It is as large as 4 times the value in a cluster of $D \sim 20$ nm. Assuming a close packing of particles in cluster and neglecting the interparticle space, a $D \sim 20$ nm cluster consists of a roughly 64 crystallites of r = 2.5 nm. At moderate 800°C or lower temperature, insufficient to cause a significant grain growth, ZrO₂ particles with so large A values configure in clusters in order to optimizing their equilibrium A_0 value. Their spherical shape is a consequence of optimization of their final morphology with a minimal A value. This, in turn, optimizes the total energy of the system to its equilibrium bulk value ε_0 . This is the reason that the observed A value lies to be smaller than the calculated ones. The other details are given in Table V for the particles derived in three ZrO₂ polymorphs with 10 at.% Cr^{3+}/Cr^{4+} additives.

A large A-value determines a large value of the total surface Gibb's free energy $\Omega = A\sigma$, with σ the surface energy density, in small particles. As a result, a specimen of small particles has a huge value of the

TABLE V Average crystallite size d, surface area A, and apparent color in modified ZrO_2 nanoparticles with 10 at.% Cr^{3+}/Cr^{4+} additives at different temperatures

Sample		Color	Structure	d (nm) ^a	$A (m^2/g)^b$
1.	Dried precursor mass	Black	Amorphous		
2.	Sample 1 pyrolysed at 250°C	Light yellow-brown	c-ZrO ₂	5 (5-10)	180 (200)
3.	Sample 2 annealed 2 h at 600–800°C	Light yellow-brown	c-ZrO ₂	8 (5-12)	100 (130)
4.	Sample 2 annealed 2 h at 900°C	Light yellow-blue	c- and t-ZrO ₂	10 (10-30)	90 (100)
5.	Sample 3 annealed 15 h at 900°C	Light blue	c-, t- and m-ZrO ₂	15 (15-30)	55 (65)
6.	Sample 3 annealed 2 h at 950°C	Light blue	c-, t- and m-ZrO ₂	15 (15-30)	55 (65)
7.	Sample 2 annealed 2 h at 1050°C	Light blue	m-ZrO ₂	25 (20-40)	35 (40)

^aAverage *d* value calculated from the x-ray diffraction peakwidths. The observed particle size from TEM is compared in the parentheses. Crystallites are arranged in clusters or particles.

^bThe value calculated in the spherical shape of crystallites is given in the parentheses.

Figure 12 A schematic Gibb's free energy level diagram in three polymorphs in bulk and ZrO₂ nanocrystals. The high-energy nanoparticles appear in metastable c- and t-ZrO₂ polymorphs in processing from an energized amorphous state in a further higher-energy value.

total Gibb's free energy *G* above the equilibrium bulk value. This is demonstrated schematically in Fig. 12 in small particles and the bulk ZrO_2 in the three polymorphs. According to thermodynamics, an amorphous polymer precursor G_a^P as well as a nonpolymer precursor G_n^P has a further larger value of the Gibb's free energy as included in this figure. This is necessary in order to operate a phase transformation from it to one of the three polymorph states by releasing the excess structural energy by heating at an elevated temperature. The results are helpful in understanding the process of the formation and existence of the high energy c- and t-ZrO₂ metastable polymorphs in small particles with an adequate doping (increases the volume Gibb's free energy).

3.5. Optical spectra in Cr^{3+}/Cr^{4+} stabilized ZrO_2 nanoparticles

Part of Cr^{4+} in stabilized ZrO_2 nanoparticles is analyzed by the chemical tests as applied in Section 3.1 for the precursor solution in the virgin metal cations. In this case, 0.1 g of KI followed by 5.0 ml of CH₃COOH is added to a suspension of 0.2 g of the ZrO_2 sample

in 20 ml of distilled water. A reaction of Cr^{4+} occurs with KI by releasing I_2 gas, $I^- + Cr^{4+} \rightarrow I_2 + Cr^{3+}$, which turns in a violet color of the specimen from a light green in the beginning. The acidic acid prevents Cr^{4+} oxidation with air and facilitates the reaction with iodide. An intense blue color appears on adding starch. It disappears if adding sodium thiosulphate.

The Cr⁴⁺ (3d²) in c-ZrO₂ nanoparticles exhibits its characteristic absorption bands over 250 to 600 nm. As shown in Fig. 13, three distinct bands (marked by asterisks) appear at 558 (${}^{3}T_{1} \rightarrow {}^{3}A_{2}$), 421 (${}^{3}T_{1} \rightarrow {}^{3}T_{1}$), and 308, 293, 270 nm (${}^{3}T_{1} \rightarrow {}^{3}T_{2}$) in spectrum (a) for sample processed with 2 at.% Cr³⁺/Cr⁴⁺ additives at 250°C. On incensing the Cr³⁺/Cr⁴⁺ contents to 5 or 20 at.%, these bands shift at longer wavelengths by as much as 35 nm in spectra (b) and (c). The bands

Figure 13 Electronic absorption spectra in stabilized c- ZrO_2 nanoparticles with (a) 1.0, (b) 5.0, and (c) 20% Cr³⁺/Cr⁴⁺ additives. The sample had been calcined at 250°C for 4 h in (a) or (b) while at 800°C for 2 h in (c) following the polymer precursor. Spectrum (d) is from a specimen of pure m- ZrO_2 processed at 1000°C in 2 h without an additive in a similar method with a polymer precursor.

TABLE VI The electronic absorption bands (in nm) in the $Cr^{3+}/Cr^{4+}\ doped\ c\text{-}ZrO_2\ nanoparticles$

Cr^{3+}/Cr^{4+} content (at.%)					
1	5	20	Pure m-ZrO ₂	Transitions	
631 (vw)	637 (vw)	631 (w)		${}^{4}A_{2g} \rightarrow {}^{2}E_{g} (Cr^{3+})$	
558 (vw)	568 (vw)	593 (vw)		${}^{3}T_{1} \rightarrow {}^{3}A_{2} (Cr^{4+})$	
450 (vw)	470 (vw)	475 (vw)		${}^{4}A_{2\sigma} \rightarrow {}^{4}T_{2\sigma} (Cr^{3+})$	
421 (w)	421 (w)	425 (w)		${}^{3}T_{1} \rightarrow {}^{3}T_{1} (Cr^{4+})$	
368 (ms)	374 (ms)	374 (ms)		${}^{4}A_{2\sigma} \rightarrow {}^{4}T_{1\sigma} (Cr^{3+})$	
308 (w)	308 (w)	323 (w) 7		$^{3}T_{1} \rightarrow ^{3}T_{2} (Cr^{4+})$	
293 (w)	283 (ms)	_			
270 (w)	-	272 (ms)		Optical bandgap	
226 (vs)	233 (vs)	239 (vs)	224 (s) 216 (vs)		

Relative band intensities are given in the parentheses; vs: very strong, s: strong, ms: medium strong, w: weak, and vw: very weak intensity values.

The samples of 1 or 5 at.% Cr^{3+}/Cr^{4+} have been processed at 250[±]C in 4 h while that of 20 at.% Cr^{3+}/Cr^{4+} at 800[±]C in 2 h. The pure m-ZrO₂ has been processed at 1000[±]C in 2 h.

which appear in $Cr^{3+}(3d^3)$ at 631 (${}^{4}A_{2g} \rightarrow {}^{2}E_{g}$), 450 (${}^{4}A_{2g} \rightarrow {}^{4}T_{2g}$), and 368 nm (${}^{4}A_{2g} \rightarrow {}^{4}T_{1g}$) in (a) shift at 637, 470 and 374 nm in (b) while at 631, 475 and 374 nm in (c). A sample (m-ZrO₂) without any additive has a strong doublet bond group of two bands at 216 and 224 nm in spectrum (d) in electronic excitation through its optical gap [35]. A single unresolved band occurs at (a) 226, (b) 233 and (c) 239 nm in Cr^{3+} and Cr^{4+} stabilized c-ZrO₂ nanoparticles. Other details with the assignments of the individual bands observed in the representative samples are given in Table VI.

In general, the electronic bands in the Cr^{4+} cations are enriched in intensity to almost equal to those in Cr^{3+} in increasing the total Cr^{3+}/Cr^{4+} contents from (a) 2 to (b) 10 to (c) 20 at.%. The processing temperature is 250° C in (a) or (b) while 800° C in (c). The c-/t-ZrO₂ crystallites, $d \sim 8$ nm, in (c) are grown almost twice as big those of the c-ZrO₂ in (a) or (b). The present result infers the $Cr^{3+} \rightarrow Cr^{4+}$ transformation upon grain growth in stabilized c-/t-ZrO₂ in nanoparticles. As also evident by the x-ray diffraction, part of the Cr⁴⁺ cations participate in growth of stabilized ZrO₂ nanoparticles by partially substituting the Zr^{4+} sites in the lattice. It appears that part of the Cr^{3+} cations used in the precursor form a thin amorphous surface layer over individual crystallites and thus help in forming the stable ZrO₂ crystallites with stabile surfaces. The presumed grain surface layer inhibits a moderate grain growth and thus results in formation of small ZrO2 crystallites at 900°C or lower temperatures.

A grain surface layer of additives in thickness Δr over a spherical particle of radius *r* imparts a volume fraction

$$f = \frac{4\pi r^2 \Delta r}{\frac{4}{3}\pi r^3 + 4\pi r^2 \Delta r} = \frac{3\Delta r}{r + 3\Delta r}$$
(16)

Assuming 50 to 80% of the total Cr^{3+}/Cr^{4+} cations to be consumed in forming a uniformly distributed grain surface layer, a ZrO₂ sample stabilized with 10 at.% Cr^{3+}/Cr^{4+} additives would have f=5 to 8%, which gives a value of the $\Delta r = 0.10$ to 0.15 nm at r = 5 nm. Roughly, it involves 1 to 2 molecular Cr₂O₃/CrO₂ layers, which are sufficient enough to form a thermodynamically rigid and stable grain surface in combination with the other surface cations or molecules in individual ZrO₂ nanoparticles.

4. Conclusions

A novel chemical method is explored with a polymer precursor for synthesizing stabilized ZrO₂ nanoparticles with an additive of Cr^{3+} and Cr^{4+} in a single metastable c-ZrO₂ phase or in a nanocomposite with t- and/or m-phase(s). It involves synthesis of a high energy precursor of dispersed Zr^{4+} , Cr^{3+} and Cr^{4+} metal cations in a polymer of sucrose and polyvinyl alcohol. The polymer molecules offer two important functions of (i) a solid dispersoid and (ii) a solid fuel. An aqueous solution of the polymer dissolves the metal cations (through aqueous solutions) in a transparent homogenous polymer solution at room temperature. It results in an amorphous polymer precursor powder on evaporating the excess water at 50 to 80°C. A refined nanopowder appears in stabilized c-ZrO₂, with as small as d = 5 nm controlled crystallite size of spherical shape, on heating from the precursor at temperature as low as $T_{\rm P} \sim 250^{\circ}$ C in air. It transforms to t-ZrO₂ on a prolong annealing of 12 h at 900°C. Peculiarly, the t-ZrO₂ has an acicular shape of particles as long as 450 nm in 15 to 30 nm widths and $\phi < 20$ aspect ratio. Clusters of small $d \sim 25$ nm crystallites form in a single m-ZrO₂ phase at as early temperature as 1050°C in 2 h. They are grown to as big as in $D \sim 300$ nm diameter.

X-ray diffraction show a structure of a solid solution in stabilized c-ZrO₂ nanoparticles with 4 to 10% Cr³⁺/Cr⁴⁺ additives. No precipitate occurs in an independent crystallite phase in the additives as long as the temperature lies under 800°C. At early dissolution of $Cr^{3+}/Cr^{4+} \sim 2$ at.%, the sample suffers with a significant lattice expansion with lattice parameter a =0.5130 nm over the 0.5090 nm value in the pure sample. A further addition of Cr^{3+}/Cr^{4+} reflects in a decrease in the a value (up to 0.5070 nm at 10% additive) as per a c-ZrO2 + $\delta Cr^{3+}/Cr^{4+} \rightarrow c$ -ZrO₂ (ss) solid solution formation. A smaller ionic radius of 0.076 nm in Cr³⁺ or 0.069 in Cr⁴⁺ over 0.086 nm in Zr⁴⁺ accounts for the decrease in *a* value on their dissolution. Cr^{3+}/Cr^{4+} dissolution in t-ZrO₂ involves an optimal 1.0% decrease (at $\delta \sim 10\%$) in c = 0.5220 nm and 0.28% in a = 0.3630 nm value. No significant change occurs in a value if dissolving Cr^{3+} alone [20], possible if it occupies the sites primarily along the *c*-axis.

The optical absorption spectra reveal as small fraction of Cr^{4+} as half the Cr^{3+} in amorphous, or recrystallized precursor in $d \sim 5$ nm ZrO_2 crystallites, with an effectively sufficient amount of $\delta \sim 10\%$ to stabilize the metastable c- or t-phase. Its content increases with grain growth in stabilized ZrO_2 at expense of Cr^{3+} at grain surface. An almost equal fraction results in Cr^{4+} and Cr^{3+} at effectively large 8–10 nm crystallites. It is possible if Cr^{4+} substitutes in part of Zr^{4+} in the crystal lattice while Cr^{3+} forms a thin grain surface layer with Zr^{4+} in small ZrO_2 crystallites. A stable grain surface with a thin amorphous surface layer, in 1 to 2 molecular layers of thickness, effectively controls the grain growth in small crystallites. Surface area does not drop below 55 m²/g until the temperature is raised above 900°C.

Acknowledgments

This work has been financially supported by the Council of Scientific & Industrial Research (CSIR), Government of India.

References

- R. C. GARVIE, R. H. HANNINK and R. T. PASCOE, *Nature* 258 (1975) 703.
- 2. R. H. J. HANNINK, P. M. KELLY and B. C. MUDDLE, *J. Amer. Ceram. Soc.* **83** (2000) 461.
- 3. S. FABRIS, A. T. PAXTON and M. W. FINNIS, *Phys. Rev.* B **62** (2000) 6617.
- 4. S. OSTANIN, A. J. CRAVEN, D. W. MCCOMB, D. VLACHOS, A. ALAVI, M. W. FINNIS and A. T. PAXTON, *ibid.* 62 (2000) 14728.
- 5. K. MATSUI and M. OHGAI, J. Amer. Ceram. Soc. 84 (2001) 2303.
- 6. D. M. ADAMS, S. LEONARD, D. R. RUSSELL and R. J. CERNIK, J. Phys. Chem. Solids **52** (1991) 1181.
- 7. J. E. LOWTHER, Phys. Stat. Solidi (b) 217 (2000) 533.
- 8. M. Z. C. HU, R. D. HUNT, E. A. PAYZANT and C. R. HUBBARD, *J. Amer. Ceram. Soc.* **82** (1999) 2313.
- 9. S. RAGHAVAN, H. WANG, W. D. PORTER, R. B. DINWIDDIE and M. J. MAYO, *Acta Mater.* **49** (2001) 169.
- 10. D. XIAMING, LI QINGFENG and T. YUYING, *J. Amer. Ceram. Soc.* **76** (1993) 760.
- 11. K. ISHIDA, K. HIROTA, O. YAMAGUCHI, H. KUME, S. INAMURA and H. MIYAMOTO, *ibid.* **77** (1994) 1391.
- 12. T. TSUKADA, S. VENIGALLA, A. A. MORRONE and J. H. ADAIR, *ibid.* 82 (1999) 1169.
- 13. B. XIA, L. DUAN and Y. XIE, *ibid.* 83 (2000) 1077.
- 14. G. L. MESSING, SHE-CHANG ZHANG and G. V. JAYANTHI, *ibid.* **76** (1993) 2707.

- G. SKANDAN, H. HANN, M. RODDY and W. R. CANNON, *ibid.* 77 (1994) 1706.
- 16. Y. XIE, *ibid.* 82 (1999) 768.
- 17. K. R. VENKATACHARI, D. HUANG, S. P. OSTRANDER, W. A. SCHULZE and G. C. STANGLE, J. Mater. Res. 10 (1995) 748.
- 18. M. JAYRATNA and M. YOSHIMURA, *J. Mater. Sci.* **21** (1986) 591.
- 19. P. LI, I. W. CHEN and J. E. P. HAHN, J. Amer. Ceram. Soc. 77 (1994) 118.
- 20. S. HIRANO, M. YOSHINAKA, K. HIROTA and O. YAMAGUCHI, *ibid.* **79** (1996) 171.
- 21. G. STEFANIC, S. POPOVIC and S. MUSIC, *Mater. Lett.* **36** (1998) 240.
- 22. N. Q. MINH, J. Amer. Ceram. Soc. 76 (1993) 563.
- 23. W. WEN-XIANG, L. ZHENG and LI FAN, J. Solid State Chem. 107 (1993) 201.
- 24. A. H. HEUER, N. CLAUSSEN, W. M. KRIVEN and M. RUHLE, *J. Amer. Ceram. Soc.* **65** (1982) 461.
- 25. J. C. RAY, P. PRAMANIK and S. RAM, *Mater. Lett.* **48** (2001) 281.
- M. P. KLUG and L. E. ALEXANDER, "X-ray Diffraction Procedure for Polycrystalline and Amorphous Materials" (Wiley, New York, 1974) p. 634.
- 27. P. MOHANTY and S. RAM, Phil. Magn. B 82 (2002) 1129.
- 28. D. F. SHRIRER, P. W. ATKINS and C. H. LANGFORD, "Inorganic Chemistry" (Wiley, New York, 1990) p. 434.
- 29. S. RAM, K. RAM and B. S. SHUKLA, J. Mater. Sci. 27 (1992) 511.
- 30. C. HUANG, Z. TANG and Z. ZHANG, J. Amer. Ceram. Soc. 84 (2001) 1637.
- 31. S. RAM, Phys. Rev. B 49 (1994) 9632-38.
- X-ray powder diffraction JCPDS File (a) 27.997, c-ZrO₂, (b) 6.054, h-Cr₂O₃, (c) 13.307, m-ZrO₂, (d) 9.0332, t-CrO₂, and (e) 24.1164, t-ZrO₂.
- 33. R. D. SHANNON, Acta Cryst. A 32 (1976) 751.
- 34. H. TORAYA, M. YOSHIMURA and S. SOMIYA, *J. Amer. Ceram. Soc.* **67** (1984) 119.
- 35. I. KOSACKI, V. PETROVSKY and H. U. ANDERSON, *Appl. Phys. Lett.* **74** (1999) 341.

Received 12 July and accepted 31 October 2002